Новые горизонты

New_Horizons_1
«Новые горизонты» — автоматическая межпланетная станция, запущенная в рамках программы «Новые рубежи» и предназначенная для изучения Плутона и его естественного спутника Харона.

P_COLOR2_enhanced_release
Запуск осуществлён 19 января 2006 года, с пролётом Юпитера (и гравитационным манёвром в его поле тяготения) в 2007 году и Плутона — в 2015 году. После пролёта вблизи Плутона аппарат, возможно, изучит один из объектов пояса Койпера. way
Полная миссия «Новых горизонтов» рассчитана на 15—17 лет.

«Новые горизонты» покинул окрестности Земли с самой большой из всех космических аппаратов скоростью. В момент выключения двигателей она составила 16,26 км/с (относительно Земли). Гелиоцентрическая скорость составила 45 км/с, что позволило бы «Новым горизонтам» уйти из Солнечной системы даже без гравитационного манёвра около Юпитера. Однако в 2015 году гелиоцентрическая скорость аппарата составляла около 14,5 км/с, что меньше, чем скорость «Вояджера-1» — 17,012 км/с, который набрал бо́льшую скорость за счёт дополнительного гравитационного манёвра у Сатурна.

Цели миссии

Основными целями миссии являются исследование формирования системы Плутона и Харона, формирования пояса Койпера, процессов, происходивших на ранних этапах эволюции Солнечной системы.

TvashtarvideoПять совмещённых изображений спутника Юпитера Ио с КА «Новые горизонты», на которых видно, как вулкан в патерах Тваштара извергает выбросы на 330 км над поверхностью

Космический аппарат будет изучать поверхность и атмосферу объектов системы Плутона, ближайшее окружение Плутона. Аналогичные исследования возможны у объектов пояса Койпера в расширенной миссии:

-Картографирование поверхности Плутона и Харона
-Исследование геологии и морфологии Плутона и Харона
-Исследование атмосферы Плутона и её рассеяния в окружающее пространство
-Поиск атмосферы у Харона
-Построение карты температур поверхности Плутона и Харона
-Поиск колец и новых спутников Плутона
-Исследование объектов пояса Койпера

Описание аппарата

Масса аппарата — 478 кг, включая 77 кг топлива. Размеры — 2,2×2,7×3,2 метра. Для запуска использовалась американская ракета-носитель «Атлас-5» в конфигурации «551» с установленным на ней российским двигателем РД-180, что было обусловлено необходимостью значительного ускорения аппарата и является наиболее тяжёлым вариантом этой ракеты из использованных на 2012 год.New_Horizons_launchtmpMXMP4W

Устройство аппарата «Новые горизонты»

New-Horizons-drawing-1-fr1 — РИТЭГ, 2 — узконаправленная антенна, 3 — широконаправленная антенна, 4 — всенаправленная антенна, 5 — двигатели коррекции, 6 — звёздные датчики, A — Alice, R — Ralph, L — LORRI, S — SWAP, P — PEPSSI, X — REX, D — VB-SDC.
800px-New-Horizons-drawing-2-fr1 — РИТЭГ, 2 — жалюзи системы обеспечения теплового режима, 3 — двигатели коррекции, 4 — всенаправленная антенна, 5 — звёздные датчики, A — Alice, R — Ralph, L — LORRI, S — SWAP, P — PEPSSI, X — REX, D — VB-SDC.

Система телеметрии и управления

Коммуникации с космическим аппаратом осуществляются в X-диапазоне с помощью антенн — узконаправленной с высоким коэффициентом усиления, широконаправленной со средним коэффициентом усиления и парой всенаправленных. Со стороны Земли обмен осуществляется при помощи антенн дальней космической связи, имеющих диаметр 70 метров и уже применявшихся для миссий за пределами орбиты Юпитера. Сигнал имеет круговую поляризацию.

View of Canberra 70m (230 ft.) antenna with flags from the three Deep Space Network sites

View of Canberra 70m (230 ft.) antenna with flags from the three Deep Space Network sites

Узконаправленная антенна диаметром 2,1 метра выполнена по схеме Кассегрена, обладает углом раскрытия 0,3 градуса и коэффициентом усиления 42 дБ. WISEШирокополосная антенна диаметром 0,3 метра и углом раскрытия 14 градусов крепится на обратной стороне вторичного рефлектора узконаправленной антенны (см схему). Пара всенаправленных антенн расположены с противоположных сторон космического аппарата. Одна из них находится поверх приёмника широконаправленной антенны, а вторая — внутри переходника крепления к ракете-носителю. Всенаправленные антенны использовались только на ранних фазах полёта в околоземном пространстве и могли бы помочь в аварийных ситуациях при потере ориентации.

Исходящий сигнал усиливается 12-ваттной лампой бегущей волны, которая (вместе с резервной) смонтирована на корпусе космического аппарата под тарелкой узконаправленной антенны._298_med Управление передающим устройством допускает одновременное использование обеих ламп, что позволяет практически удвоить скорость передачи данных на Землю. Испытания такого способа передачи в начале миссии были признаны успешными и сейчас считаются рабочим вариантом (в том случае, если хватит запаса мощности системы электропитания).

Система связи имеет избыточную конструкцию — большинство ключевых устройств в системе связи продублировано, и в случае выхода из строя основных устройств их работу примут на себя запасные. Система позволила передавать данные на Землю со скоростью 38 кбит/с в районе Юпитера — скорость, сравнимая со скоростью устаревшего модема. По достижении Плутона аппарат сможет передавать данные со скоростью 768 бит/с; 1 мегабайт будет передаваться примерно 3 часа. Это крайне маленькая скорость, но и она позволит передать на Землю ценные научные данные и даже высококачественные фотографии. Помимо низкой скорости, дополнительным усложняющим фактором будет задержка сигнала, составляющая 4,5 часа в каждую сторону.

Научная информация, полученная в результате наблюдений, будет передаваться не сразу — сначала она сохраняется в банках памяти бортового вычислительного комплекса. Это происходит отчасти потому, что скорость поступления такой информации существенно выше пропускной способности передатчика, а также и потому, что вся аппаратура в целях снижения массы аппарата смонтирована непосредственно на корпусе космического аппарата и требует для её нацеливания поворота всего аппарата. Такой способ позволяет сделать космический аппарат более лёгким. Такой подход применяется не повсеместно — например, космические аппараты серии «Вояджер» имели поворотные платформы для научных приборов. Однако у «Вояджера-2» при пролёте Сатурна платформу заклинило, и в научную программу пришлось вносить коррективы — для получения снимков Урана и Нептуна с должной выдержкой без эффектов размазывания пришлось поворачивать аппарат вслед за планетой. Точно такой же подход теперь применён и на «Новых горизонтах».

Система энергообеспечения

В качестве источника электроэнергии был взят радиоизотопный термоэлектрический генератор (РИТЭГ). На старте его электрическая мощность составляла 250 Вт, и согласно прогнозам, она будет падать на 5% каждые четыре года, что обеспечит мощность в 200 Вт в 2015 году, во время основного этап миссии — пролёта системы Плутон—Харон, что гораздо меньше мощности РИТЭГа «Вояджеров» (470 Вт на старте, 290 Вт в 2006 году). Этим объясняется меньшая длительность миссии, которую планируется завершить в 2020-х годах, когда аппарат пройдёт 50—55 а. е.

РИТЭГ был разработан в Министерстве энергетики США в Комплексе материалов и топлив (ранее Западный Аргонн), являющемся подразделением Национальной лаборатории Айдахо в Бингеме. На борту космического аппарата отсутствуют иные источники питания, вся энергия полностью генерируется РИТЭГом, периоды пиковых нагрузок парируются батареями конденсаторов. Управление нагрузкой производится посредством блоков быстрых переключателей.

Масса плутония, загруженного в РИТЭГ «Новых горизонтов», примерно втрое меньше, чем было в «Кассини-Гюйгенс». Тем не менее, этот проект вызвал протесты активистов. Министерство энергетики Соединенных Штатов оценило вероятность неудачного запуска, при котором произойдёт радиоактивный выброс в атмосферу, в 1 к 350. Считалось, что худший вариант полного рассеивания плутония распространит радиоактивное заражение, эквивалентное 80 % средней ежегодной дозы фонового излучения в Северной Америке, в окрестности с радиусом 105 км.

Бортовой вычислительный комплекс

Бортовой вычислительный комплекс состоит из двух систем — системы обработки команд и данных и системы навигации и управления. Каждая из двух систем дублируется, что в сумме даёт четыре компьютера. Компьютеры построены на базе процессора Mongoose-V с архитектурой MIPS, который является радиационно-стойкой версией процессора R3000 и работает на частоте 12 МГц. 55a622a894e3fПо сравнению с процессором RAD750, используемом в марсоходе Curiosity, он является менее производительным и работает на меньшей частоте (12 МГц против 200 МГц), но и гораздо более дешёвым (20 000 — 40 000 долл. против 200 000 долл.).

Для хранения научной информации применены два банка флеш-памяти (основной и резервный) объёмом по 8 Гбайт.

Платы компьютеров размещены в интегрированных электронных модулях, внутри которых поддерживается необходимый режим. Помимо плат компьютеров, там размещены платы прочей электроники — научных приборов и органов управления. Каждый модуль содержит в себе 9 плат.

19 марта 2007 года в компьютере системы обработки команд и данных произошёл некорректируемый сбой ячейки памяти, в результате чего компьютер перезагрузился и перешёл в защищённый режим. Полное восстановление работоспособности заняло двое суток, при этом часть научных данных о магнитосфере Юпитера была утрачена. Данный сбой не повлиял на основную миссию аппарата.

Система ориентации и стабилизации

Космический зонд «Новые горизонты» не обладает достаточной мощностью бортового источника энергии, чтобы иметь возможность производить стабилизацию посредством маховиков. Поэтому задача ориентации и стабилизации полностью возложена на корректирующую двигательную установку. В качестве топлива для неё используется метилгидразин.

В топливном баке космического аппарата можно разместить до 90 кг метилгидразина, но в данной миссии было заправлено только 77 кг. Этой массы топлива достаточно, чтобы придать аппарату дополнительную скорость в 290 м/с. В качестве вытеснителя используется гелий.

«Новые горизонты» имеют два режима стабилизации — обычный и высокоточный. В обычном режиме стабилизация двигателями производится по двум осям, а по третьей, направленной от Земли и проходящей через антенны, аппарат стабилизируется гироскопическим эффектом (вращение со скоростью пять оборотов в минуту). В высокоточном режиме стабилизация двигателями производится по всем трём осям. Высокоточный режим используется для проведения большинства научных исследований и требует бо́льшего расхода топлива.

Система обеспечения теплового режима

Температура внутри космического аппарата поддерживается в районе 10—30°C. В начале миссии на стороне, обращённой к Солнцу, температура была выше, но не превышала 40°C. Минимально допустимая температура составляет 0 °C, обусловлена температурой замерзания гидразинового топлива.

Температурный режим поддерживается балансировкой электропитания и отработанного тепла РИТЭГа и потерь тепла через термоизоляцию, внешние элементы инструментов и системы управления.

Для поддержания температуры космический аппарат обёрнут в лёгкую многослойную термическую изоляцию, которая удерживает тепло от работающей электроники по принципу «термоса».

События

2004—2005 год — сборка космического аппарата;
19 января 2006 года — космический аппарат «Новые горизонты» успешно запущен с мыса Канаверал;

январь 2006 года — осуществлена плановая коррекция траектории полёта аппарата для предстоящего выполнения гравитационного манёвра около Юпитера. 28 и 30 января были проведены кратковременные включения двух маневровых двигателей зонда, в результате чего скорость аппарата изменилась в общей сложности на 18 м/с;
7 апреля 2006 года — аппарат пересёк орбиту Марса на расстоянии 243 млн км от Солнца. Скорость аппарата составляла около 21 км/с;
13 июня 2006 года — аппарат прошёл в 110 тыс. км от небольшого астероида 132524 APL (ранее известного под временным обозначением 2002 JF56). newhorizonsБыло проведено фотографирование и проверка систем захвата и сопровождения движущейся цели;
к сентябрю 2006 года проверена работоспособность всех семи научных приборов;
28 февраля 2007 года — гравитационный манёвр в окрестностях Юпитера. В 05:43:40 по UTC аппарат приблизился к планете на расстояние 2,305 млн км; получены фотографии планеты и её спутников, сделанные с высоким разрешением;
8 июня 2008 года — аппарат пересёк орбиту Сатурна;
9 ноября 2009 года — проведена серия коррекций траектории, позволяющая обеспечить необходимую ориентацию диаграммы направленности антенны для связи с Землей;
29 декабря 2009 года — зонд пересёк условную границу, которая отмечает половину расстояния от Земли до Плутона;
30 июля 2010 года — «Новые горизонты» успешно опробовал на Нептуне и его спутнике Тритоне камеру LORRI с расстояния примерно 23,2 а. е. от Нептуна.New_Horizons_LORRI_Neptune_1
18 марта 2011 года — аппарат пересёк орбиту Урана;
17 июня 2014 года — начало ежегодной проверки систем (последней перед прибытием к Плутону).
14 июля 2014 года — впервые с 2010 года (и в шестой раз с момента запуска) аппаратом была проведена коррекция курса. Двигатели аппарата проработали 87,52 секунды и обеспечили приращение скорости в 1,08 м/с, потратив около 250 г топлива из 53 кг, имеющихся на борту. В результате манёвра зонд прибудет к цели на 36 минут раньше — согласно расчётам на основе уточнённых данных об орбитах Плутона и Харона, их взаимное расположение в этот момент позволит провести наблюдения согласно планам. Выполнение коррекции на этом относительно большом расстоянии от цели позволяет избежать более серьезных манёвров в будущем.
25 августа 2014 года — аппарат пересёк орбиту Нептуна.
6 декабря 2014 года — успешный вывод аппарата из режима гибернации; всего с середины 2007 года до этого времени аппарат провёл в гибернации 1837 дней (почти две трети времени полёта), разделённых на 18 отдельных периодов длительностью от 36 до 202 дней
январь 2015 года — начало наблюдений Плутона с большого расстояния. Не исключалось, что потребуется выполнить коррекцию траектории, чтобы избежать столкновения зонда с космическими объектами, расположенными вблизи Плутона (невидимыми пока спутниками, кольцами);Portrait_of_Pluto_and_Charon-1
12 марта 2015 года аппарат приблизился к Плутону на расстояние менее 1 а. е.; за два дня до этого была проведена очередная коррекция траектории, ставшая самой удалённой в истории космонавтики — зонд находился на расстоянии около 4,77 млрд км от Солнца;
5 мая 2015 года — разрешение изображений Плутона с «Новых горизонтов» превысило разрешение лучших снимков объекта, полученных космическим телескопом «Хаббл».
12 мая 2015 года — опубликованы снятые «Новыми горизонтами» фотографии, на которых видны все известные на данный момент спутники Плутона (фото сняты с 25 апреля по 1 мая).
30 июня 2015 — «Новыми горизонтами» с помощью инструмента Ralph подтверждено наличие на Плутоне метанового льда, ранее открытого космическим телескопом «Хаббл».
4 июля 2015 — компьютер зонда «Новые горизонты» дал сбой, приведший к перерыву связи с центром управления полетом на 81 минуту. Задача устранения проблемы осложнялась временем прохождения пакетов команд от Земли до зонда (на момент обрыва связи оно составляло 4 часа 30 минут).
6 июля 2015 — специалисты NASA заверили, что компьютерный сбой 4 июля не повлияет на дальнейший ход миссии.
14 июля 2015 года, около 11:50 UTC — пролёт на расстоянии около 12,5 тысяч километров от поверхности Плутона. В целом аппарат проводил наблюдения всего 9 дней, за которые собрал примерно 50 гигабит информации. Передача всех собранных данных будет продолжаться до конца 2016 — начала 2017 года; После обработки всех данных они позволят проверить гипотезу о наличии на Плутоне океана воды (предполагается, что он находится под толщей льда на поверхности карликовой планеты).
5 сентября 2015 года — передача данных, собранных во время пролёта мимо Плутона.
22 октября 2015 года — первая после пролёта Плутона коррекция траектории космического зонда с использованием двух малых гидразиновых двигателей, проработавших 16 минут и изменивших скорость станции на 10 м/с.

1 января 2019 года — пролёт аппарата вблизи объекта пояса Койпера 2014 MU69 на расстоянии 43,4 а.е. от Солнца. Из-за крайне ограниченного запаса топлива любые коррекции траектории после пролёта Плутона были возможны в крайне небольшом диапазоне (примерно 1 градус). На момент старта аппарата известных объектов-целей не было. Лишь в 2014 году с помощью телескопа «Хаббл» удалось найти 3 подходящих астероида: 2014 MU69 (1110113Y), вероятность достижимости 100 %, потребовалось бы около 35 % доступного топлива; 2014 PN70 (G12000JZ), вероятность достижимости 97 %, потребовалось бы почти всё топливо (размеры этого объекта примерно в 2 раза больше, чем размеры 2014 MU69), и 2014 OS393 (E31007AI) — вероятность достижимости 7 %. Последние две цели были отклонены.

2026 год — планируемое окончание миссии.

2038 год — аппарат достигнет 100 а. е. от Солнца.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.